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The strain of inhomogeneous materials is usually accompanied by distortion in the form 
of the component grains. These distortions are random and, even if the average value 
of the strains does not exceed the value of the elastic limit, local stresses may be large 
enough to cause microplastic shears. It is the latter phenomenon that prompts the study 

of not only the average characteristics of an elastic field, but also the deviations of the 

strain field from its mean value in the isolated regions of a solid body. 

We find, that various correlation functions may be used to study the relationship be- 
tween the regions of inhomogeneity. These functions make it possible to construct quan- 

titative pictures of microstresses, of deviations of the grains from their equilibrium form 

and of their interaction during the strain process. 
We shall assume the second order correlation function for the elastic moduli tensor 

known, and we shall choose it in the form corresponding to an inhomogeneous medium 
with the boundaries between the grains clearly defined. Distortion of the grains during 
the strain process are characterized by the binary correlation functions of the stress and 
strain tensors and angles of rotation. To obtain the information on the character of the 

deformation of grains, we analyze the tensor and coordinate relationships of the correla- 
tion functions indicated above. 

1. .Let us obtain the autocorrelation tensor of elastic moduli of randomly oriented 

polycrystalline specimen. We shall express the elastic moduli tensor hrjrr in an arbitrary 
coordinate system in the terms of its value in the crystallographic reference system 

&*rs and the direction cosines aip 

%jkl = %p%%r%&2ra (1-l) 

Then the problem of computing the second order central moment function of the elas- 

tic moduli tensor is reduced to the process of averaging the products of direction cosines 

A $~I!Y E <&jkI&qrs) = I(ai~aj~LPldaplaouCLru41rtp) - 

- (aiaajbaR&d> (aplaquarvarr)l k&dhtkw (1.2) 

Here the brackets ( ) denote the averaging over all possible orientations of the 
crystallites, while the primes denote the random terms of the elastic moduli tensor 
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Direct computation yields &,a& = V&j& 

(%+%~%at,> = +ff- I&t + l/s (4~ - 1).(3&l - 5d{j&)] (1.3) 

(aimajmakmapnamam) = + hjkmrL 

Ghajma~,malmapna~) = +j [hjklpJ4nn + ‘18 tamn - 1) Whjklpp - 7~ij&l~pq)l 

(armajmakmal,a,,P,,arn&m) = 

= -$ [agjs + a (am,- 1) (56:; - 63bijklapps + WF$)l 
whew bj...rs denotes the sum of products of the Kronecker deltas and where the sum- 

mation is performed over all possible permutations of indices except the identity permu- 
tations of the type &j = 6 
15 and 105 terms respective:; 

. The fourth, sixth and eighth order matrices 8 contain 3, 

bjkl = hj6kl.+ 6ikdjl-F hlbjk 

8 fjklpq = hjbklpq + hk6jlpq + 6i16jkpq + bp6jkIq + bq&jklp 
&Ijkl 

pqra = 6ij6klpqrs + hkajlpqrs + bi16jkpqrs + hpajklqrr + 

+ bq6jklprs + dtr6jklpqs + 6fr6jklpqr 

In the expression (1.3). S$$ denotes the matrix 

WI 

B g: = PfIj% - &tjdkl)pqrs = dfjdklpqrs + 6ikdjlpqrs + 8i16jkpqra + 

+ 6jk6ilpqts + hbikpqrs + hkldijpqrs (1.5) 
When computing the averaged products of the direction cosines (1.3). we have used 

the transfer matrix constructed with the help of the Euler angles. When m = n the 
averaging of an even number of the direction cosines leads to the terms of the type 

i 6 
(Zn + i)ll *j***’ 

while the odd number yields zero. When m # n , the components of the averaged ma- 
trix of direction cosines will differ from zero only when all rows and columns contain 
an even number of the elements CQ,,. 

Let us find the autocorrelation tensor Azi:S for an orthorhombic polycristalline,sys- 

tern. The elastic moduli tensor of the cristallite possessing orthorhombic symmetry refer- 

red to the crystallographic axes, can be written as follows: 
a (1.6) 

where the following symmetrization is performed over the indices within the rounc 

brackets hidj)k = ‘/a (hdjk + bj6ik) 

Coefficients A(“), p.(? and %@) are related to the matrix stress constants as follows: 

h(l) = crt + ca3 + 2c44 - (Cl2 + Cl3 + 2% + 2G34) 

A(9 = C%2 + %I + h.5 - (Cl2 i- cz3 -I- 2% + 2%) 

h(3) = $8 + Cl% + 2% - (Cl3 + CP3 + 2c*4 + 2c,,) 

2p = Cl9 + ClS - cs,, 2p = Cl1 + q, - Cl3 (1.7) 

2p = Cl3 + ha - Cl99 20 = Cbb + f&J - C,d 
20 = II!,4 + c&j i- cm 20 = c44 + cglj - C4( 
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Inserting (1.6) into (1.2) and using Formulas (1.3). we find the autocorrelation tensor of 

elastic moduli for orthorhombic polycrystals 

AiikI 
Pvs =&ii [ (2 

~(N~(N - 2 ppj x (1.81 
11 n.m 

X (45P$\- ~$!&!s - 638ij,$p& f Paa (S$$ - + d,j,ld,,,) + 

and where the symmetrization 6 . 
ijkl[pq 83 - 

s, = 1 
h (h&ipp 8 6 a) r* + I&h pq 

is performed over the indices within square brackets. Expression (1.8) yields the con- 
tractions of the autocorrelation tensor 

Aijpp 
klqq = ‘/loA, ijklv D Dpq,,A% = ‘/~b(loA,~&t + 3&D& (1*10)1 

Al = a/sPxx, Aa = %Pg + 8Pw + */a 2 h(n)h;m) 
n,m 

,(n) = E(n) + 3p, E(n) = h(n) + 4#Q 

When the polycrystal exhibits higher symmetry, Formulas (1.6) - (1.10) simplify, and 

the elastic moduli tensor becomes 

‘,‘jkl =‘iFkl+ ‘6 i ‘inGjn6knSln (iii)* 

for the tetragonal system [l], 
n 

‘&t = ‘&t + A&sj$k#13 + L (gdk$,, ;f 6&j#kl) + 4bQ$j) (k61)3 (1.12) 

for the hexagonal system, 

h ’ ijkl = hi:;, + IS i 8in8j,8kn8,, (i.13) 

for the cubic system and 
n 

1’6 =I.18 J3 +2h8 8 ilk1 il kl t i(k 1)j (1.14) 

for the isotropic system. 
In the case of tetragonal symmetry we have 

cr1 = C,, Cl1 = %a, c44 - CM 

which leads to the following relations between the one-index coefficients A@), ~(~1, ~(“1 
ana )i,: k(l) = L(s) = La, h(3) = hs + hs. $1) = l&s1 = ‘/*A1 (1.15) 

$3) = J”; + ‘/&, v(1) = 42) = I/&, v(3) = A j + ‘/A 
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This yields At in terms of, clb 

3* 1 - cl19 h - a8, 

1, - %s - % 
5 - ea# + al, + ha - Cl1 - 2e1, - de,, 

A, - e, - 
(i.i6) 

CCC, A+ - Cl1 - Cl1 -ho 

When AO = 0 the relations (1.16) lead to the hexagonal symmetry, while when 
AJ = Aa = 5 - 0 we have the cubic symmetry. In the latter case the autocorrelation 
tensor (1.8) becomes very simple 

A$$!,= i&i ( 356$: + %jk&g, - 45$$,) (1.17) 

Coefficients A, and A, for the tetragonal and hexagonal system are, respectively 

A;= % (A?. + 3kr + 4Abs)’ 

A: = ‘/a (h3 + 4%3)’ + ‘tb (k+ + 3hda + 6kb= 

A; = A:, A; = ‘136 (2b3 + 5k3)’ + i%f 

while for the cubic system they become 
A;=O, A; = “/bk,,’ (i.18) 

Lomakin [3] obtained the following autocorrelation tensor for an arbitrary, quasi- 
homogeneous, randomly oriented medium 

A$,$ = “r%j$,J&,& + 2h, (Q k p r6a + 6i(k6,),apq6r,) + 4~f(k6r)&$&x)q tiaig) @ ( )q 

where ht are constants. We see that the autocorrelation tensor given by (1.17) contains, 
in the simplest cubic symmetry case, 105 different terms, while the expression (1.19) 
contains only nine terms. 

The unsuitability of (1.19) for the present case is shown on the following example. 
Direct computation of a component of the autocorrelation tensor A?$: yields 

A;:; = (&) = X,’ 
<B alnsa*asn - k 61m)3 = A2 2 <al~alm’amamamam) = 

n n,m 

= 3&s <atn4as,aas,a) = A&s (1.20) 

This can also be obtained from (1.17), while according to (1.19). As = 0. Thus we 
see that (1.19) can only be used for randomly oriented mechanical mixtures of isotropic 
components. 

In the case of a two-component mixture the coefficients ht are [4] 

h - Cl% (A1 - M’, h, = Cl% (& - 5) (c(1 - Ps), h, = vs (PI - Id’ (1.20 

where cr denotes the concentration, while A, and pf are the Lame constants of the Ith 

component. Contractions of the elastic moduli autocorrelation tensor are obtained for 
the mechanical mixtures of isotropic components, from the relations (1.19) and (1.21) 

AtiE =9DK6,$,. Dpqr.42 = 4D,Dij,, (-3 

K = I. + ‘I#, bK z UC’), D, I <p”) 

Comparing (1.10) and (1.22) we note, that the contractions A-?(: are,.from the point 
of view of their tensor properties, of opposite character for the polycrystals and for 
mechanical mixtures. 

2. We shall now describe the deviations of the stress and strain fields ofjand elj from 
their mean values, in the terms of the corresponding correlation functions. The simplest 

correlation function describing the inhomogeneity of the strain field has the form of a 
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second rank tensor .vrl, which can be expressed in the terms of random components of 

the displacement field as ufj tr _ p) = cud’ tr) Uj’ tQ)) (2.1) 

Here the angle brackets denote the averaging over a region which is large compared 
with the spatial dimension of the correlations, but small compared with the intervals 
over which the re.gular parts of the function vary substantially. 

In addition to U,J, we shall consider three other correlation functions 

E tjmn (r-P) = (Q’(r) Gnn(P)), Qtj @- PI = Cm*’ W @j’ (PI> (23) 

S ijmn tr - PI = <Oij’ W %A (PI>, 01 = ‘/#irjuj, k 

first of which describes the inhomogeneity of the shear and volume strains, the second 
describes local rotations, and the third characterizes the inhomogeneity of the stress 

field. Here etkJ denotes a unit antisymmetric tensor. 

We shall use me equilibrium equation 

J%lu, + ft.= 0, Lit E VAk,&lmVtn = CLIl) + Lil’ (2.3) 

where (LJ is the regular and Lilt is the random component of the operator L,, , 
to obtain the correlation functions. 

From (-2.3) it follows, that within the approximation including double correlations,the 
random component of the displacement vector of a uniformly strained medium can be 
written as [S] I+’ = G# * 4,’ <U;> = Gik. I * hklpq <epp) (2.4) 
where the asterisk denotes the convolution integration over the whole space and G,, 
is the Green’s tensor function of the operator (Lit). This function can be written in the 
terms of the averaged Lame’ constants (h) and \b) 

Gfk tr) = an <,,> -!- (r. PA - xr, ih)c 
<k-P.) 

%= <h+2lL) 

Inserting (2.4) into (2.1) we obtain 

u,j (r) = A%? <ePq) (e,,> If::(r) 

1::: (r) f CU., I * CP * Gjr, 8 (r) 

(2.5) 

(2.6) 

(2.7) 

where cp (r) is the radial part of the binary correlation function of the elastic moduli 
tensor 

<& (r) &r: (P)> = A$! cp (r - P) (2.8) 

Separation of the tensorial from the coordinate relationships for the binary correlation 
function of the elastic moduli tensor of the quasi-isotropic solid bodies,follows from the 
results of p and 61. Let us carry out the averaging process in two stages, firstly for a 
single grain, and secondly over all grains in the aggregate. We shall seek the mean value 

of the random component of the elastic moduli tensor over one grain at the point p, if 
its value at the point r is known. For this purpose we shall introduce the weight func- 
tion, with the aid of which the averaging process shall be carried out. This function will 
be equal to unity if both points, r and.pbelong to the same grain, and zero otherwise. 

If the crystal habit of the crystallites deviates from the crystallographic axes, then the 
weight function is a scalar. With this in mind we shall draw a sphere of radius p - r 
and perform the integration over the angles 

(2.9) 
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This averaging process is performed over the various forms of the crystallites, but not 
over the orientations of their crystallographic axes. If the function Q, truncates the values 

of the random components of the elastic moduli tensor on the boundary of the crystallite, 
then the spherically symmetric function cp “blurs” the values of the tensor kijhl over a 

region comparable in size with the average size of a crystallite. This function is equal 

to unity when r = p and decreases asymptotically with increasing argument. 
Let us now perform the averaging over all crystallites. We can assume that the only 

difference between the various crystallites lies in the orientation of their crystallographic 
axes and, consequently, perform the averaging over the orientations [i?]. Multiplying both 

sides of (2.9) by I;,,, (r) 
h Pati (r) Aijk; (P) =$i& (r)'hijk; PI cP(l r-P I) 

and averaging over all orientations, we obtain (2.8). 
Computation of the integral 4:: gives 

J!‘$... I) (r) c V,V, . . . 0, & s eikrlcwan(p* (k) dk (2.11) 

Functions J’?,/ .a _..s, are given by (2.11) under the condition that the order of differen- 
tiation N < 2?2, and have the following recurrent relations: 

~~J~%L,.~ (r) = - J?E% (r), J(O) (r) = cp (r) (2.12) 
We shall assume that the inhomogeneity of the material results from.the presence of 

definite boundaries between the separate crystallites. The material properties change 

abruptly during the passage from one crystallite to the next, and the spatial part of the 
correlation function can be chosen in the form [4 and 51 

f+(r) = exp$, ‘p* (k) = J cirrq (r) dr = (1 $;S)* (2.13) 

Inserting (2.13) into (-2.11) we find the integral J (r) 

J’“’ (r) = (--l)“u2” [(i+T) EX~(-+)-$~‘~($-~“] (2.14) 

from which we see that the finite function cp (r) = exp (--r/a) used to describe the spa- 
tial part of the elastic moduli correlation tensor does not lead to the appearance of any 
singularities in the integrals /$i ... * . This is due to the fact that when the integral J(“)(r) 

is differentiated 2n times, all singular derivatives vanish. For example, for J,ij(tl we 
have J(l)=-aa[(i+$) e4--$] (pz$) 

V,Vj J$‘) = 2as (11 i-“) V*~j ($) 
IS 

= - 7 (i - e+) 6 (P) 6ij G 9 

V,Vj J,(l) = T,(“6ij + T,(‘)‘#ijs qtj = ninj (ni=T) 

T,(l) = +-+-$+$- e4-+i, > T,(l) = - 

where the subscripts S and F denote, respectively, the singular and the formal part of 
the derivatives 
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ViVj J(l) = V‘Vj Js(‘) + ViVj JF(l) 

Formulas (2.6),(2.10) and (2.14) define the correlation function of the displacement 

vector. Correlation functions of the strain tensor and angles of rotation can be written, 

in the terms of uij as follows: 

E limn = - V(&j) (m, n)9 Q,j=- 114f3pqejrrupr,pa (2.15) 

For the correlation function of the stress tensor we have 

S iimn = Az%q cekl> (epq) ‘? + <hjkl) (hrnnpq) Eklpq + 

+ &jkl> cepq) <ekl’Lnpd + (hrnnpq) <%l) <ep,‘&jd (2.16) 

Computing the mixed correlation function (U’kAmnW) we obtain 

(uk’{r + p) Lnpq (p)> = Wrr, 8 * Gstv4Cnnw) = 

z A ~~~ <et,> & V, il)& + xJ, !%I (2.17) 

Thus (2.16) can be written as 

S* - AZ& @kl> <e,> Cp i- <hjkl> (kmnpq> &pq d- iimn - 

+ AZ? 
Xf ij#l 

Chjkd (+J (ed Irs + &to (hmnpq > <ekl> (eld Ici (2.18) 

I;; z & (&,$?a + ?@kls) (2.19) 

Expressions (2.6),(2.15) and (2.18) can be simplified using the following relations 

valid for a quasi-isotropic medium 

A% (a& <e,,> = Fl8&r A- FsDljkt (2.20) 

FI = ‘loAk’$i <%> (eklh F, = %&rr A%? (%j> (eklb (2.21) 

where the contractions of the tensor AiLf are given by (1.10),(1.18) and (1.22). 
Inserting (2.20) and (2.21) into (2.6) we obtain 

Utj = ( Fa + ‘/#I) 1;:: + F&f (2.22) 

The explicit form of the correlation functions of the strain tensor and rotation vector 
can be obtained by putting (2.22) into (2.15) 

Inserting (2.19),(2.20) and (2.23) into (2.18). we obtain the correlation function of 

the stress tensor 

3, Let us write the strain tensor as a sum of its volume and shea?components 

eij = l/saaij + ‘IsDijtra,r (S.4) 
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Then by (1.10) and (2.. i! 1) we shall have, for a polycrystal, 

F I = %A1 (cj2, F2 = %04 (e>l+ V800A2 (e>l 

(6’ s DijKl (etj> (Ed 
(3.2) 
(3.3) 

and for a mechnical mixture of isotropic components with (1.22) taken into account, 

FI = DK(e)2, FS = V6 D, (e>’ (3.4) 
From (3.2) and (3.4) it follows that we can obtain the correlation functions for arbi- 

trary strains of an inhomogeneous material by simple summation of the correlation func- 
tions for the volume and pure shear strain. With this in mind, we can write the correla- 
tion tensors of strains and angles of rotation, as 

Eijkr = e&r (ej2 i- e&r <e>2, Qij - 0; (e)2 + 6li; (e)a (3.5) 
By (2.23) and (P. S4), the coefficients Eijhr and Oij are 

for the polycrystals, and 

(3.6) 

(3.7) 

(3.3) 

for the mechanical mixtures. 
The condition oij = 0 means, that the volume strain of the mechanical mixtures of 

isotropic components is not accompanied by the rotation of the grains. This is also true 

for the volume strain of the polycrystals possessing cubic structure for which, in this case, 
the elastic field is homogeneous. For the polycrystals possessing lower order symmetry, 

the volume strains are accompanied by the random rotations of the crystallites. 
We can obtain expressions analogous to (3.6) and (3.8) for the correlation function of 

the stress tensor Sijkr , by separating the quantity Fi into its deviation and volume com- 
ponents and writing analogous relations for q and 5. 

The scalar function Eiihk (r) gives the correlation between the random components 

of volume strains at the points r + ? and 2 , while the contraction of Eijkl (r) with 
the deviation tensor yields the correlations for the shear strains. 

Corresponding expressions have the form 

which yields 

Eiikk(P) = cp (4 
1350 <h + 2pL>s 120-4, (aj2 + 3 (54, -i- 24) (e>“l (3.11) 
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cp (4 DijrlEijrl (r) = 4050 <A + zp)s mA, w + 3 (2w + ~4%) +>*I (3.12) 

p=8+9(2+<W(W 
for the polycrystal and 

(3.13) 

(3.14) 

for the mechanical mixtures. 

From (3.10) - (3.14) it follows, that the radial dependence of both, contractions of 
the correlation tensors of the strain field and contractions of the correlation function of 

the elastic moduli tensor, has the same character. Generally speaking, the correlations 
between the random components of the volume or shear strain exist in both these cases 
of macro-strain. In some cases however, they may become simpler. Thus for the cubic 

polycrystals A, = 0, therefore the random component of the elastic field is absent in the 

volume strains. 
In the case of mechanical mixtures, (e)a and (e>2 are preceded by the autocorrela- 

tion coefficients of the corresponding elastic moduli. The latter means, that the neces- 
sary condition for the random component of shear strains to appear when <e) = 0 is, that 
the moduli of the shear components assume different values. The random component of 
the shear strain may also appear when the shear moduli coincide, but then we must have 

<e) # 0. Analogous argument holds for the random component of the volume strains. 
Correlations between the rotations of individual grains are given by the functionvQij , 

ita contraction being given by 

~ii (r) = - 2$.‘P (r) (3.15) 

Thus we obtain 

Q,f P) = i$$j2 (IOAt (e>* + 3As <e)*) (3.16) 

Qii tr) = & cp (4 W (3.17) 

for the polycrystal and for the mechanical mixture respectively. 

Expression Pti can be regarded as a scalar product of random vectors taken at the 
points r -I- p and p. We can easily see that the correlation function constructed on the 
basis of vector products of the corresponding vectors becomes zero i. e. ctfkQjk = 0. 

This follows from the properties of the model of the quasi-isotropic space which is used 
here, and in which Qlj (r) = Pjt (r). 

Similar relations can be written for the correlation function of the stress tensor. Coor- 
dinate dependence of the corresponding contractions is also given by the function cp (r). 

This follows from 

s;ikk (r) = 2 (3~ + 25 + Fz) q.(r), Dijdijrr (r) = ‘/a (41; + 5Fz) CP (r) (3.18) 
In the case of a polycrystal. contractions of the correlation tensor of the stress field 

have the form 

Siikk (4 = 
cp PI 

225 <A + 2~)’ t30 <W A, <eY + (40 (PY -4, + 9 WY AS) <e>zl 
(3.19) 
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DiiklSiikl tr) = 2025 7;‘: zpjz [IO+% 0-V + 3 (40 W AI + &I WI 

q = 27 <W + 48 (K/A) + 32 +>a 
(3.20) 

while for the mechanical mixture we have, respectively 

hkk (4 = 5 .,h4y&,, (20 (PY DK W + 3 (KY D, W) (3.21) 

DijkJijkl (r) = 45 c~$?$p)2 (60 (PYDK W2 + q& <e>“) (3.22) 

4. Let us compare the fluctuation characteristics of the stress and strain fields. We 
introduce the following dimensionless partial correlation functions 

The subscript accompanying E and S shows, which of the components of the strain 
tensor (shear e or volume e) is different from zero. Thus when r = 0, the function E, 

gives the respective spatial fluctuation of the volume strains appearing when strain takes 

place without shear, while E, yields the relative fluctuation of the shear strains taking 
place when the material is strained with its mean volume kept constant. 

Computing E and S for mechanical mixtures, we obtain 

E,2 = 
D, Cp (r) E a = 2pD,cp (r) 

0. + 2p>* ’ 0 45 (h + 2pY 

16 <IL>’ DK Cp (r) 0,~ (r) 
(4.2) 

S,’ = 9 <K)P <A. + 2p>a ’ se’ = 45 (CL j2 (h + 2p)’ 

which, in turn, yields the ratios of the dimensionless partial correlation functions of the 
stress and strain fields S, 4 <cr> se. 4 

E, = 3<Kj ’ 
-- 

- = (pj 2”p Ke ( > 

‘lr 
(4.3) 

From (4.3) we see that the relative spatial fluctuations of the stress and strain fields 
coincide only when ,( K) = 4/s (p). For volume strains, the ratio of the dimension- 

less partial correlation functions yields directly the coefficient ‘/a (p) (K)-‘, while 
in the case of shear strains we have, on inserting the explicit expressions for p and, q 

into (4.3). <3K - 4~) (3K + 4~) ‘It 

9 <K>f + 24 (K> <p> + 24 +>a 1 (4.4) 

The second critical case takes place when the relative spatial fluctuations of the elas- 
tic field occur under pure shear, and shear fluctuations under volume strains, Putting 

e, = (E&J”‘, e, = (DijktE*Skl)“‘c o* = (S&)“‘, a* = (DijklSi~~L)“* (4.5) 

we can find the connection between the characteristics of the random stress and strain 
fields 

o* = 3 (0 a*, s* = 2 +>e* (4.6) 

We note that when p = 0, (limit transition of an emulsion or a mixture of poly’mers 

possessing the property of fluidity after the full relaxation of stresses), the correlation 
stress tensor S l becomes zero as expected, while the contractions of the correlation 
tensor of straizkassume the form 
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%Kk - - aJ~~iik,Eijk, = tI09D, <eFcp (4 (4.7) 

For polycrystals, (4.1) is replaced by 

E 2 = V-M + PA) WI 
0 1350 a +&ii (4.8) 

s 2 = (40 WP Al+ QAz) cp(‘) 
c 2700 <p’> <L + 2p>s 

From this we see that, unlike the case of mixtures of the isotropic components, here 
the relative spatial fluctuations of the volume stresses and strains coincide for all poly- 
crystals. When the macro-strains are pure shear, the dimensionless relative correlation 

functions for the shear components of the elastic field will coincide, as in the case of 
mechanical mixtures, only when (K) = “/‘a (CL). T o confirm this, it is sufficient to 

represent 8,IE, as 

(4.9) 
For the characteristics of the random volume components of the elastic field appearing 

during the average shear strains and of the random shear strains and stresses appearing 

when the polycrystal undergoes volume strain, we have, instead of (4.6), 

a,=3(K)e, l- 
[ 

~AI <3K - 4~) <3K + 4p> “a 

9 (Kja (5& + Uz) 3 
<3K - 4~) <3K + 4~) 

</~>a 1 
‘18 

9 (KP.+ 24 (K> (p.) + 24 

(4.10) 

(4.11) 

Expressions (4.10) and (4.11) reduce to (4.6) when (K) = 4/a(p). 
As we noted before, the coordinate relationship is the same for the contractions of the 

elastic field correlation tensors and for the binary correlation function of the elastic 
moduli tensor. This relationship however, becomes more complicated for the arbitrary 

components of the elastic field correlation tensors. General expression for the second and 

fourth rank tensors has, in the quasi-isotropic space, the form [7 and 81 

Tij (r) = Tl(r) 6ij + TZ (r) $ij (4.12) 

Trial (r) = TI (r) &$kl+ TZ (r) D,j,i + Ts (r) (hij$kl+ ‘#i+kl) + 

+ T4 (r) “(@j)(k n I) + TS (p) $ijkl (4.13) 

9ij E ninj, $]ijal G ninjnpl, nzr/r (4.14) 

Let US now obtain the functions T, (r) and T, (r) for the correlation tensor P,, in their 

explicit form. Inserting (2.13) into (2.24) we obtain 

Q,j (r) = Ql (4 6ij + 622 (4 $*j (4.15) 

Q2 (r) = - 521 (r) - (4.16) 

(4.17) 

We easily see that the contraction Sai, leads to Formula (3.15). From (4.16) and 

(4.17) it follows that when r + 0 and r + 00 , the functions P, and 9, are 
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i.e. when r = 0. then the second term in (4.15) vanishes, whilewhen r + co, then 
Pi (r) decreases at the slower rate than the exponential expression defining cp (i). 

Similarly we can obtain the functions Z’i (r) for the fourth rank correlation tensors of 

the strain and stress fields Q~(r) and Sljkl (r). 
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